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Abstract: An isosbestic point in the temperature dependence of an absorption spectrum is commonly viewed
as a sign of interconverting chemical or structural species. Here I explore an alternative microscopic origin
of temperature-independent absorbance in inhomogeneously broadened spectra: While the equilibrium
probability of observing a particular frequency generally changes with the magnitude of thermal fluctuations,
the weight of at least one frequency is insensitive to small changes in temperature. The range of temperature
accessible to aqueous solutions at ambient pressure is sufficiently small that such insensitivity would appear
in experiments as an isosbestic point. This mechanism depends only on the continuity of equilibrium
distributions, not on the presence of multiple components. Even the simplest model of a single solute species
in a fluctuating environment exhibits isosbestic points, van’t Hoff behavior, and, with appropriate dependence
of transition frequency on configuration, multiple absorption peaks.

I. Introduction

Changes in spectroscopic absorbance as a function of external
control parameters, such as temperature (T), pressure (p), or
chemical potential (µ), provide clues to the microscopic structure
of solutions. Isosbestic points, distinct frequencies where
absorbance is insensitive to thermodynamic perturbations, are
considered to be especially revealing. A popular interpretation
focuses on the fact that different dilute solute species absorb
additively. Any shift in the equilibrium between two intercon-
verting species redistributes the weights of their contributions,
modifying the net spectrum. However, if two species absorb
with equal strength at a particular frequency, then the net
absorbance at that frequency will not depend on their relative
proportions. Changes in external conditions that shift equilibria
between species but do not alter their intrinsic absorbance
generate isosbestic points.1

As an example, Raman spectra of HOD in liquid water exhibit
an isosbestic point. (All discussion of absorptivity in this paper
applies equally well to scattering intensity.) The scattering
intensity at a frequency within the OD stretching band is nearly
constant over much of the temperature range between freezing
and boiling points at 1 atm.2-5 This fact has been cited for
several decades as evidence for a two-state picture of liquid
structure. Specifically, many have attributed a shoulder on the
blue side of the line-shape to a distinct population of weak or
broken hydrogen bonds between pairs of adjacent molecules.

A well-separated spectral feature in the X-ray absorption
spectrum,6 as well as isosbestic behavior of more complicated
spectroscopic observables,7 appears to bolster this view. Even
those who interpret the vibrational spectrum as a continuum of
intermolecular arrangements often decompose line-shapes or
distributions into two or more components,8 putatively distin-
guished by hydrogen bonding strength, and imagine intercon-
version between them as “breaking and making of hydrogen
bonds”.9 Whether explicit or implicit, two-state pictures are
endemic in the modern literature on aqueous structure.

Inferring multi-state behavior from constant absorption over
a range of temperature or pressure rests on the assumption that
intrinsic absorbance of individual species is insensitive to
thermodynamic perturbations. In this article, I scrutinize that
assumption. Section II examines the general influence of thermal
fluctuations on solutes’ absorption line-shapes. Simple analysis
and illustrative models, presented in Sections III and IV, indicate
that isosbestic points in spectra obtained over a limited range
of temperature or pressure are not compelling evidence for multi-
component equilibrium. Instead, such points, and other apparent
hallmarks of multi-state behavior, can arise trivially from the
statistical thermodynamics of continuously distributed micro-
scopic states. Here I demonstrate on microscopic grounds that
isosbestic points can arise in one-component systems under very
general circumstances, contrary to conventional expectations.2

Section V discusses spectroscopic features that do distinguish
multi-state equilibrium. In Section VI, I conclude with remarks
on the specific case of liquid water.
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The notion that multi-state equilibrium uniquely explains
isosbestic behavior has been challenged in the past.10-13 Previous
counterarguments have leaned heavily on indirect empirical
observations. Falk and Wyss noted that temperature-independent
absorption due to OH stretching is common even in solids,
where an appreciable population of broken hydrogen bonds
seems unlikely. Curnutte and Bandekar showed numerically that
explicit structural interconversion is not necessary to obtain an
isosbestic point in distributions of OD stretching frequencies.
These calculations, however, required as input atomic pair
correlation functions, which themselves exhibit isosbestic
points.14 The account of single-component isosbestic behavior
I describe in this article is, to my knowledge, the first to proceed
solely from intuitive microscopic ideas and well-known proper-
ties of equilibrium states.

II. Thermal Variation of Line-Shapes

Consider two electronic or vibrational states of a solute, “g”
(ground) and “e” (excited), separated by an energy gap,pωeg.
Coupling of these states to solvent fluctuations modulates the
transition frequency,ωeg, often producing broad absorption line-
shapes. I will focus on one ubiquitous source of line broadening
in dense, polar liquids, known as inhomogeneous broadening.
In this mechanism, the instantaneous configuration,x, of solvent
and solute molecules (which I refer to collectively as the “bath”)
determines the frequency,ωeg(x), at which a solute absorbs.15

A diverse set of bath configurations yields a wide distribution
of transition frequencies and, therefore, a broad line-shape.

Quantitatively, the inhomogeneously broadened line-shape
I(ω) can be written in terms of the distribution functionF(x)
for bath coordinatesx:

The possible sensitivity of transition dipole to bath fluctuations
is neglected in eq 1 and hereafter. At thermal equilibrium,F(x)
) Q-1exp[-U(x)/kBT], where U(x) is the potential energy
function, Q is the canonical partition function, andkB is
Boltzmann’s constant. Under these approximations,I(ω) is
simply a reduced Boltzmann distribution for the variable
ωeg(x).

Temperature dependence ofI(ω) is controlled entirely by the
equilibrium configurational distributionF(x). Differentiating eq
1 at constant volumeV and numbers of atoms{Mi} yields

Angled brackets in eq 2 denote thermal averages overF(x). The
subscriptω indicates a restricted thermal average, including only
configurations with a specific value of the transition frequency,
ωeg(x) ) ω. Relationships nearly identical to eq 2 have been
presented before and have even been used to extract energy

functions from measured spectra.16 However, the implications
of this simple result for isosbestic behavior have apparently been
overlooked.

A local isosbestic point, where absorbance is insensitive to
small changes in temperature, occurs wherever the derivative
∂I/∂T vanishes. According to eq 2, any frequency whose average
energy equals that of the entire ensemble will exhibit constant
absorbance over a suitably small range of temperature. Because
〈U〉 is a weighted average of〈U〉ω, the mean value theorem
guarantees that∂I/∂T ) 0 for at least one frequency,ω*, at any
temperature. For the idealized spectra under consideration,
isosbestic points always exist! This property is unrelated to the
presence of distinct interconverting species, which would
correspond to a particular form ofF(x).

If interactions between solute and solvent extend only over
distances comparable to a molecular diameter, then the solute’s
transition frequency depends on only a few bath coordinates.
Even if these interactions span large distances, it is likely that
the effect of constrainingωeg is concentrated in a few collective
modes of bath fluctuation or that each of many modes is
perturbed weakly. As a result, the difference,〈U〉ω - 〈U〉, is
essentially equal in magnitude to the average energy of a small
number of statistically independent degrees of freedom. This
equivalence is exact in the case of a harmonic bath and linearly
varying transition frequency:

Here,xi is the ith normal coordinate of the bath, andRi is its
associated susceptibility. The coefficientai determines the
sensitivity of frequency shifts, about a reference valueω0, to
fluctuations inxi. In the absence of constraints, the equipartition
principle dictates an average energy ofkBT/2 for each of then
normal modes. The temperature dependence of〈U〉ω is also
easily determined for this model: The energetics of bath
fluctuations remain harmonic whenωeg is constrained, while
the number of active normal modes is reduced by one.
Consequently,〈U〉ω - 〈U〉 ) U0(ω) - kBT/2, where the function
U0(ω) ) ω2/(2∑i)1

n Riai
2) is independent of temperature. Re-

gardless of the diversity of contributing bath motions, the heat
capacity associated with fluctuations in transition frequency is
just a fraction ofkB. In such cases, eq 2 gives a change in relative
absorption due to a small change in temperature∆T

at a local isosbestic point. Temperature ranges explored in most
experiments are, in fact, small in this context. The maximum
relative change in temperature for aqueous experiments bounded
by freezing and boiling transitions at ambient pressure is∆T/T
≈ 0.37. One should not expect the relative change in absorbance
at a local isosbestic point to much exceed 10% over this range.

III. Spectroscopic Model

A schematic one-dimensional model is sufficient to illustrate
these ideas. Relevant bath degrees of freedom are represented
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(12) Falk, M.; Wyss, H. R.J. Chem. Phys.1969, 51, 5727-5728.
(13) Curnutte, B.; Bandekar, J.J. Mol. Spectrosc.1972, 41, 500-511.
(14) Robinson, G. W.; Cho, C. H.; Urquidi, J.J. Chem. Phys.1999, 111, 698-

702.
(15) Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford

University Press: New York, 1995. (16) Walrafen, G. E.J. Chem. Phys.2004, 120, 4868-4876.

U ) ∑
i)1

n xi
2

2Ri

(3)

ωeg ) ω0 + ∑
i)1

n

aixi (4)

|∆I(ω*)

I(ω*) | ≈ (∆T
T )2

(5)

I(ω) ) ∫dx F(x)δ(ω - ωeg(x)) (1)

(∂I(ω)
∂T )

V,{Mi}
)

I(ω)

kBT2
[〈U〉ω - 〈U〉] (2)

Temperature Dependence of Inhomogeneous Broadening A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 127, NO. 42, 2005 14931



by a single coordinate,x, with a linear restoring force, i.e.,U(x)
) x2/2R. Physically,x could describe the fluctuating electric
field of a polarizable solvent, coupled to a solute dipole whose
magnitude differs in ground and excited states. In that case,
the one-dimensional caricature, with a suitable choice ofR, is
equivalent to a dielectric continuum approximation.17,18A model
for inhomogeneous broadening must also specify how bath
fluctuations modulate the solute’s energy gap. Ifωeg(x) is a linear
function of the bath coordinate, as in a standard Brownian
oscillator model,15 then the absorption spectrum is Gaussian,
with a characteristic width proportional toxRkBT. This line-
shape is plotted in Figure 1 at several temperatures between an
arbitrary reference temperature,T0, andT0 + ∆T ) 1.4T0, a
range comparable to 0-100°C. Together with the principle of
equipartition, eq 2 implies local isosbestic points at∆ω*(T) )

( x〈∆ω2〉, where∆ω(x) ) ωeg(x) - ω0 is the instantaneous
frequency shift away from the band centerω0. Although
∆ω*(T0) and∆ω*(T0 + ∆T) differ by roughly 20% of the half
bandwidth, changes in absorbance at∆ω*(T0 + ∆T/2) are barely
detectable within this temperature range. To distinguish∆ω*(T0

+ ∆T/2) from a true isosbestic point, one would need to
confidently resolve differences in absolute absorbance of less
than 1%.

The occurrence of two symmetric isosbestic points is
unavoidable in this particular model, where positive and negative
frequency shifts are equally likely. Nonlinearities, either in the
forces governing bath fluctuations or in the dependence of∆ω
on x, will break this symmetry. It is unlikely that realistic
nonlinearities will reduce the number of locally temperature-
invariant points in an inhomogeneously broadened spectrum.
Very large frequency shifts, whether in the positive or negative
direction, typically correspond to molecular arrangements with
very high energy. The restricted average〈U〉ω, varying continu-
ously with ∆ω, should therefore cross the average energy〈U〉

an even number of times. However, one of these crossings could
well occur in the wings of the line-shape. (See, for example,
Figure 4.) In that case, one isosbestic point would be much less
prominent than the other and could even escape experimental
detection. Effects of dynamics or changes in transition dipole,
which are omitted in my analysis, might also remove one or
more local isosbestic points.

The local isosbestic points I have identified for a single solute
species exhibit temperature-insensitive absorbance only over a
sufficiently small range of temperature. In this sense, they are
not strict, or “exact”, isosbestic points. I emphasize, however,
that temperature invariance is no more exact when intercon-
verting species are present. Two dilute absorbing components
could be represented by a bimodal distribution of bath coordi-
natesF(x) ) n(1)F(1)(x) + n(2)F(2)(x). Heren(1) andn(2) ) 1 -
n(1) are the probabilities of finding a given solute as species
“1” and “2”, respectively, andF(i)(x) is the distribution of bath
variables within statei. In this case

where I(i)(ω) ) ∫dxF(i)(x)δ(ω - ωeg(x)) is the line-shape of
speciesi and〈...〉(i) denotes an average overF(i)(x). Note that a
local isosbestic point is not necessarily located whereI(1)(ω) )
I(2)(ω) since energy fluctuations described by the final two terms
in eq 6 confer temperature dependence on both components’
line-shapes. BecauseI(1) and I(2) are each subject to inhomo-
geneous broadening, local isosbestic points will shift with
temperature just as in the single species example.

In a model where frequency shifts depend linearly on a
Gaussian bath coordinate, the number of absorption peaks, rather
than isosbestic points, distinguish systems with and without
interconverting species. However, multiplicity of spectral
features can also be a misleading gauge of multi-state equilib-
rium. Only a slight modification of the one-dimensional model
is needed to generate spectra with more than one peak from a
single species in a Gaussian bath. Specifically, the solute
transition frequency might depend on bath coordinates in a
substantially nonlinear way. Some spectroscopic observables,
such as energies of core electron excitations probed by X-ray
absorption, are very sensitive to local symmetry.19 Small
displacements in solvent near a locally symmetric configuration
could then switchωeg between two characteristic values. Such
a sharp division of a smooth bath distribution into two classes
could give the appearance of physically distinct, stable species.
Figure 2 illustrates this possibility. The nonlinear function
∆ω(x) plotted in the inset of Figure 2 yields a two-peaked line-
shape from a single species coupled to a Gaussian distribution
of bath fluctuations. Indeed, spectra of arbitrary complexity can
be rendered from such a trivial one-state model through
appropriate choice of∆ω(x). I stress that the distributions of
microscopic states underlying Figures 1 and 2 are identical. The
models differ only in the way the spectroscopic observableωeg

reports on this distribution.(17) Jackson, J. D.Classical Electrodynamics; John Wiley & Sons: New York,
1999.

(18) Song, X.; Chandler, D.; Marcus, R. A.J. Phys. Chem.1996, 100, 11954-
11959.

(19) Cavalleri, M.; Ogasawara, H.; Pettersson, L. G. M.; Nilsson, A.Chem.
Phys. Lett.2002, 364, 363-370.

Figure 1. Absorption line-shapeI(ω) at several temperatures for a single
solute species coupled to a Gaussian bath. Here, frequency shift∆ω is linear
in the bath variablex, as shown in the inset.∆ω has been scaled by its

root-mean-squared value,x〈∆ω2〉0, at an arbitrary reference temperature
T0. The bath coordinate has similarly been scaled by its root-mean-squared

value, x〈x2〉0, at the same temperature. The bath susceptibility,R, was
presumed temperature-independent for this calculation.

(∂I(ω)
∂T )

V,{Mi}
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kBT2
[n(1)I(1)(ω)(〈U〉ω
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When distinct spectral features do arise from interconverting
species, the integrated absorbance of each feature should reflect
the corresponding component’s population. Specifically, if
energies of the two states are temperature-independent, then the
logarithm of the ratio between integrated absorbances will be a
linear function ofT-1. Such van’t Hoff behavior is another
widely accepted sign of multi-state equilibrium. The features
of aqueous X-ray and Raman spectra assigned to broken and
intact hydrogen bonds exhibit van’t Hoff behavior, consistent
with a two-state picture.6 Remarkably, however, a single species
coupled to a Gaussian bath satisfies the van’t Hoff equation as
an excellent approximation over temperature ranges accessible
for aqueous systems. To demonstrate this fact, I define two
“species” artificially by dividing the spectrum at a cutoff
frequencyωc

and ñ(2) ) 1 - ñ(1). These integrated absorbances vary with
temperature according to

Subscripts in the right-hand side of eq 8 indicate average
quantities of the two “species”, that is, restricted averages over
configurations with transition frequencies greater or less than
the cutoff. As with the energy difference in eq 2, if fluctuations
in ωeg are dominated by a few bath modes, then the right-hand
side of eq 8 will depend weakly on temperature. Figure 3 shows
the nearly linear relationship between ln(ñ(1)/ñ(2)) and inverse
temperature for the single species models considered in Figures
1 and 2. A slight curvature is discernible but would be difficult
to resolve experimentally. Furthermore, the origin of this
curvature, namely, differing heat capacities in two subensembles,
is generally pertinent for mixtures of chemically distinct,
interconverting species as well.

IV. Other Thermodynamic Variables

Intensive fields, such as temperature or pressure, play
equivalent thermodynamic roles with respect to their conjugate
extensive variables. The conclusions we have drawn for
temperature isosbestic points thus have natural extensions. In
particular, when varying pressure, one should expect nearly
constant absorbance wherever the derivative

vanishes. As with eq 2, relationships similar to eq 9 have
appeared before,20 but their bearing on isosbestic behavior has
escaped attention.

Imagine that changes in volume due to constraints on
transition frequency have a characteristic scale,V0, and an
isothermal compressibility,κ. The relative change in absorbance
at a local isosbestic point over a small range,∆p, is then
approximately

AssumingV0 to be some fraction of a molecular volume andκ

to be the bulk compressibility of liquid water, the pressure scale
over which local isosbestic points are well-defined (|∆I/I| ,
1) at room temperature isx(kBT/κV0) ≈ 104 atm. This range is
comparable to what has been explored in aqueous experiments.20

Similarly, changes in chemical potential or concentration of
H+(aq) will generate local isosbestic points at frequencies where

changes sign. In deriving eq 11, I have assumed that the
concentration of H+(aq) is low enough that its density fluctua-
tions are simply those of an ideal solution. What constitutes a

(20) Walrafen, G. E.J. Chem. Phys.2004, 121, 2729-2736.

Figure 2. Absorption line-shapes at several temperatures for a single solute
species responding nonlinearly to a one-dimensional Gaussian bath. The
specific dependence of frequency shift on bath coordinate, plotted in the
inset, was constructed to give a line-shapeI0(ω) at reference temperature
T0 that is a superposition of two Gaussian peaks, both with variance
〈∆ω2〉′0. In detail, for each value of∆ω, a value ofx was located (via
bisection) to equate cumulative probabilities,∫-∞

∆ω(x)I0(ω) ) ∫-∞
x exp(-x2/

2RkBT0)/x2πRkBT0.

ñ(1) ) ∫-∞

ωc dωI(ω) (7)

(∂ ln (ñ(1)/ñ(2))

∂(1/kBT) )
V,{Mi}

) 〈U〉ω>ωc
- 〈U〉ω<ωc

(8)

Figure 3. van’t Hoff plots for the model systems considered in Figures 1
and 2 over a temperature range comparable to 0-100 °C. For the single
species linearly coupled to a Gaussian bath (squares), two populations were
defined by choosing the rightmost isosbestic point as the cutoff frequency.
For the model with nonlinear coupling (circles), populations were divided
by the local minimum ofI0(ω) (i.e., between the two peaks in Figure 2).
Solid and dashed lines are best-fit straight lines through the two data sets.
In both cases, temperature has been scaled by an arbitrary reference value
T0.

(∂I(ω)
∂p )

T,{Mi}
) -

I(ω)
kBT

[〈V〉ω - 〈V〉] (9)

|∆I(ω*)

I(ω*) | ≈ (κV0

kBT)∆p2 (10)

(∂I(ω)
∂pH )

T,p,{Mi}
) - (ln 10) I(ω)[〈NH+〉ω - 〈NH+〉] (11)
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small pH change in this context depends on how strongly the
spectroscopic observable is coupled to acid-base chemistry,
that is, how the average number of hydronium ions changes
whenωeg is constrained.

A single solute species coupled to a fluctuating bath generates
isosbestic points in inhomogeneously broadened spectra over
small ranges ofany external parameter that influences the
equilibrium distribution of microscopic states. These points
occur at frequencies where restricted averages of extensive
variables are equal to unrestricted ensemble averages, as
exemplified by eqs 2, 9, and 11. It is illuminating to consider
the average numbersN1 andN2 of two genuine, interconverting
chemical species as external parameters that can be constrained.
Shifting the equilibrium between these species at fixedT andp
clearly modifies microscopic distributions, and a local isosbestic
point will appear. Since the components generally absorb with
different strengths at a particular frequency, constrainingωeg

generally biases their relative proportions. Isosbestic points occur
where such a constraint does not bias the chemical equilibrium
on average,〈N1 - N2〉ω ) 〈N1 - N2〉. They correspond precisely
to frequencies where the two components absorb with equal
strength. This classic isosbestic scenario is the result of variations
along a particular direction in the space of thermodynamic
parameters. Isosbestic points accompany variations along other
directions as well, but with different quantities, such as energy
or volume, playing the role ofN1 - N2. As I have shown, it is
not even necessary for the thermodynamic space to include a
parameter characterizing the position of a chemical equilibrium.
Attributing temperature or pressure isosbestic points to underly-
ing two-state equilibria amounts to asserting a simple relation-
ship between energy or volume and population differences.
These assertions are reasonable when the position of a chemical
equilibrium establishes a nearly unique thermodynamic state.
In general, however, energy, volume, and solutes’ relative
concentrations can vary independently.

V. Discussion

The calculations I have presented are purely illustrative. They
demonstrate that the appearance of isosbestic points in inho-
mogeneously broadened spectra can have little to do with the
existence of distinct, interconverting species. Specific calcula-
tions exemplifying this principle for vibrational spectroscopy
of HOD in liquid water will be presented elsewhere.21 Extensive
evidence suggests that the OD stretching band is strongly shaped
by inhomogeneous broadening, with a dominant contribution
from a single hydrogen bonding degree of freedom.8,9 Recent
work indicates that the associated transition polarizability varies
weakly among pertinent configurations.22 The assumptions made
in this paper are therefore quite reasonable for Raman spec-
troscopy of the OD stretch. The observed temperature isosbestic
point can indeed be easily rationalized as the result of
straightforward changes in a continuous distribution of hydrogen
bonding geometries, with no need to invoke distinct classes of
solvation structure. Two-state pictures inspired by the appear-
ance of isosbestic points in a variety of systems, including other
solutes in water23-25 and other liquids such as methanol,26,27

should be similarly reconsidered.

Factors I have neglected entirely, such as entropy of bath
fluctuations, homogeneous broadening, and variations in transi-
tion dipole, only enrich the possible spectroscopic behavior of
systems with very simple underlying distributions of microscopic
states. Figure 4 demonstrates this fact. I have plotted line-shapes
corresponding to a non-Gaussian, but nonetheless single-
component, bath distribution. In this model, both entropyS(x)
and energy vary anharmonically along a one-dimensional bath
coordinatex. I have chosen frequency shifts and bath displace-
ments to be proportionate,∆ω ∝ x, for the sake of simplicity.
Nonlinear forces might reflect details of intermolecular potentials
at short distances (e.g., forces which stabilize hydrogen bonds).
Indeed, the shape ofU(x) in Figure 4a is similar to that extracted
from Raman spectra of HOD in D2O,16 and the line-shapes in

(21) Smith, J. D.; Cappa, C. D.; Wilson, K. R.; Cohen, R. C.; Geissler, P. L.;
Saykally, R. J.Proc. Nat. Acad. Sci. U.S.A., published online Sep 22, 2005,
http://dx.doi.org/10.1073/pnas.0506899102.

(22) Corcelli, S. A.; Skinner, J. L.J. Phys. Chem. A2005, 109, 6154-6165.

(23) Long, F. H.; Lu, H.; Eisenthal, K. B.Phys. ReV. Lett. 1990, 64, 1469-
1472.

(24) Friedrich, D. M.; Wang, Z.; Joly, A. G.; Peterson, K. A.; Callis, P. R.J.
Phys. Chem. A1999, 103, 9644-9653.

(25) Simeon, V.; Butorac, V.; Tomisˇić, V.; Kallay, N.Phys. Chem. Chem. Phys.
2003, 5, 2015-2019.

(26) Giguère, P. A.; Pigeon-Gosselin, M.J. Solution Chem.1988, 17, 1007-
1014.

(27) Luck, W. A.; Fritzsche, M.Z. Phys. Chem.1995, 191, 71-86.

Figure 4. Example line-shapes arising from non-Gaussian, single-state bath
fluctuations. The energy and entropy functions governing a bath distribution
F(x) ∝ exp[S(x)/kB - U(x)/kBT] are plotted in (a) and (b), respectively. Line-
shapes are shown in (c) for temperatures between an arbitrary reference
valueT0 and 1.4T0. Entropy is meaningful and relevant here only within
an additive constantS0. As in Figure 1,〈...〉0 denotes an equilibrium average
at the reference temperatureT0.
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Figure 4c strongly resemble measured spectra. Although the
bath in this case is not a linearly responding medium, it need
not have any bistable or multi-state character.

Note that the leftmost isosbestic point in Figure 4c resides
in the line-shape’s low-frequency wing. In this model, entropy
is responsible for its inconspicuousness. The larger multiplicity
of configurations withx > 0 shifts the peak ofI(ω) away from
the energy minimum. The ensemble average energy is therefore
higher than it would be for uniform multiplicity [S(x) ) const].
The convex energy functionU(x) crosses〈U〉 twice. One
crossing corresponds to the set of configurations that dominate
the thermal average, generating an isosbestic point near the peak
of I(ω). The second crossing corresponds to high-energy
configurations on the opposite side of the energy minimum.
These latter configurations are disfavored both energetically and
entropically. Their associated isosbestic point is thus well-
removed from the center of the line-shape. This mechanism is
a generic, but not unique, way for isosbestic points to, in effect,
disappear into the wings of a spectrum.

A more complete, and therefore more flexible, spectroscopic
model should strengthen the argument that certain conventional
signatures of multi-state equilibrium (temperature or pressure
isosbestic points, multi-peaked spectra, and van’t Hoff behavior)
are not sufficient to infer the presence of chemically or
structurally distinct solute species. What criteria should compel
one to make such an inference? Distinct species should be
separated by free energy barriers that render the dynamics of
interconversion much slower than basic molecular motions.
Time-resolved nonlinear spectroscopy allows the observation
of populations enriched in one species as they relax to
equilibrium. The time scale of this relaxation provides a much
more stringent test of two-state pictures than variations of linear
spectra over a limited thermodynamic range. Femtosecond two-
dimensional infrared spectroscopy of the OH stretch in liquid
D2O indicates that purportedly distinct populations of broken
and intact hydrogen bonds, in fact, interconvert quite rapidly.28

The results presented here demonstrate that such observations
of fast spectral diffusion,29,28and the barrierless landscape they
imply, are consistent with the existence of an isosbestic point
in the one-dimensional Raman spectrum.

The continuous bath distributions employed in this paper
could be viewed as an equilibrium between very many
microscopically distinct species. From this perspective, fluctua-
tions within a single basin of attraction amount to an extreme
limit of the multi-component picture. While technically correct,
this view can be misleading. Specifically, it undermines
distinctions that do exist when a molecule or intermolecular
arrangement adopts a small number of genuinely distinct forms.
In loose terms, for two species to be meaningfully distinct, they
must be separated by a region of configuration space where the
density of low-energy microscopic states is much smaller than

for either species. Fluctuations within a single basin of attraction
do not satisfy this criterion. Slow interconversion between
components, on the other hand, virtually ensures structural
segregation. At first glance, a multi-peaked reduced distribution
function would seem to imply a similar distinction, but the small
weight of transition frequencies between peaks in Figure 2
reflects only the fact that∆ω(x) is a rapidly varying function
in this interval. Without knowing how frequency shifts depend
on configuration, one can extract little structural information
from the shape of an inhomogeneously broadened spectrum.

VI. Conclusions

The likelihood of single species isosbestic points arises from
the fact that fluctuations modulating a solute’s transition
frequency aremicroscopicin character. Associated heat capaci-
ties and compressibilities are commensurately microscopic.
Variations in ambient conditions of less than 100 K or 104 atm,
despite their significance for phase transitions of a liquid such
as water, exert small perturbations on the equilibrium distribu-
tion of relevant coordinates. Over such small ranges, a vanishing
derivative in the line-shape would appear as an isosbestic point
in most currently feasible spectroscopic measurements. In the
limit of inhomogeneous broadening, statistical mechanics
guarantees the existence of such local isosbestic points in any
smooth spectrum. Since broad, continuous distributions are the
rule in dense polar liquids, conclusions regarding distinct
solvation structures require more detailed dynamical information
than one-dimensional spectra can provide.

Implications for intermolecular structure in liquid water are
especially interesting. Rationalizing isosbestic behavior in the
Raman and IR spectra of HOD in H2O(l) has been a long-
standing challenge for continuum pictures. This work shows
how a smooth distribution of hydrogen bonding geometries,
lacking qualitatively distinguishable species, could plausibly
generate temperature and pressure isosbestic points. Rather than
demarking distinct populations of solvation structures, isosbestic
points in this scenario simply discriminate frequencies whose
energies (or volumes) are below average from those with higher
energies (or larger volumes). Two populations can certainly be
defined according to such a dividing point, and they would likely
exhibit van’t Hoff behavior over accessible temperature ranges,
but this division is arbitrary. Different cutoff frequencies could
be chosen, and the corresponding populations would satisfy van’t
Hoff’s equation just as well. Marked insensitivity to the choice
of cutoff frequency thus calls into question the multiple species
interpretation of an isosbestic point. The variety of divisions
employed in two-state analyses of liquid water5 suggests such
an arbitrariness. It will be interesting to see if detailed
measurements confirm this consequence of inhomogeneous
broadening.
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